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ABSTRACT 
 
Seismic data files in SEGY format can be of substantial size 
as these contain generally hundreds of traces collected from 
multiple shots. The data is usually transmitted through direct 
wires to different processing centers. It is important to 
preserve the integrity of the data in transmission and for 
storage, however, with very little loss, it is possible to 
compress the data with large compression factors. To this 
extend we propose a computationally efficient and robust 
technique for compressing multiple traces from multiple 
shots using Principle Component Analysis (PCA). Here, we 
use PCA to reduce the dimensionality of the data. The basic 
concept relies on finding a linear transformation that could 
project the original data over a set of orthogonal basis. The 
transformation is obtained from Singular Value 
Decomposition (SVD) of the estimated autocorrelation 
matrix. The autocorrelation matrix represents the 
dependencies across the traces from the same sensors and 
across different sensors. In our experiments we used 
publically available data from the Texas Seismic database. 
The data is gathered from 18 shots recorded by 33 sensors.  
The shots are generated by dynamite in 80-100ft depth 
holes. Each sensor is located 220 feet from another sensor. 
The data consists of 18 traces per sensor each trace contains 
1501 data points sampled with 2 ms of sampling period and 
are filtered by 8-64Hz bandpass filter. The experiment 
covered 18 shots.  Using the developed algorithm we reduce 
the dimensionality of the data from 18 to 3. The dimension 
of the output feature vector (3) was obtained by preserving 
more than 95% of the total energy in the original data which 
can be seen as almost a lossless compression.   
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1. INTRODUCTION 

 
Seismic data file in SEGY format is quite large. Number of 
trace generated by 1 shot only can reach ±400ܭ traces or 
equals to 2.5 GB. One SEGY file contains multiple shots 
making the file size can reach 50TB[1]. Such huge file size 
is a challenging problem to solve. Each trace contains 
similarity with other traces since the traces are either 
generated by the same shot or recorded by the same 
recorder.  
Some works on seismic data compression have been 
proposed ranging from compression based on quantization 
at acquisition[2], transform on quantization[3], and Wavelet 
transform at seismic image level[4]. Most of the works, 
however, did not use public data for experiment.  
    

2. SEISMIC DATA AND PROPOSED WORK 
 
2.1 Seismic Data 
We use Seismic data  from east Texas, USA [5]. Seismic 
data file contains seismic traces sampled at Ts=2ms or 
Fs=500Hz . The files uses number of sample per trace  N୲ =
1501. Seismic data for our experiment, consist of Number 
of shot 18, each , number of channel per slot 33, making 
number of traces N୬ = 18× 33 = 594. Sensor location is 
determined by the gx field at header file. Each sensor 
records 18 shots (Figure 1). Data are recorded using 
receivers with interval 220 ft=67.056 m, (distance between 
traces). Each sample is represented by double-floating point 
type data(64 bits=8Bytes). Total sample points are ௦ܰ =

௧ܰ× ௡ܰ = 1501×594 = 891594 sample points. Data size 

௦ܰ×8ܤ = ܤ7132752 =  The traces are filtered .ܤܯ 6.802
by 8-64Hz bandpass filter. 



 
Figure 2.1. Trace plot of 18 traces recorded by a sensor 

located at 220ft 

2.2 Singular Value Decomposition 
Dimensionality reduction is a well-known technique to 

represent multidimensional signal into smaller dimension 
with least distortion. The idea is to project the data to a set of 
vector where each vector is perpendicular against other 
vectors. The data are projected onto these vectors 
orthogonally such that the distortion, which is the distance of 
the original position and the projection on the vector, is 
minimum. The figure below illustrates the technique.  

 

 

Figure 2.2 (a) 2-D data projected onto vector ࢛૚ (b) 1-D 
Orthogonal Projection of 2-D data to ࢛૚ 

 

 

Figure 2.2 (c) 2-D data projected onto vector ࢛૛ (d) 1-D 
Orthogonal Projection of 2-D data to ࢛૛ 

Figure above illustrates how signal projection can reduce the 
number of dimension needed to represent the data. Figure 
(a) shows how original data on 2-Dimension projected onto 
vector ݑଵ and figure (b) shows 1-D representation of the 
data after are orthogonally projected to vector ݑଵ. Figures 
(c) and (d) show the same mechanism, respectively, but the 
data are orthogonally projected to vector ݑଶ instead of 
vector ݑଵ. Vectors ݑଵand ݑଶ are orthogonal each other. We 
can fully reconstruct the data by projecting both projections 
on the vectors onto original basis vector. For compression 
purpose, reducing dimension is a method to reduce number 
of data representation. To reconstruct the original data from 
the projection, we need to keep the projection vectors (ݑଵ 
and or ݑଶ). Using less number of eigenvectors will generate 
distortion to the reconstructed data.  

Please open 
http://arsgiso.org/journals.php?DoGetPublication=DoGet&v
arGetVolume=3&varGetIssue=1&varGetIdJournal=6# to see 
full version. 

2.3 Principal Component Analysis  
The traces above can be represented by a 18×1501 matrix 
T. for compression purpose we use Principal Component 
Analysis(PCA) for dimensionality reduction. We use each 
trace as feature such that we have 18 features. After 
averaging, we have zero average matrix for each column T଴ 
and we have average row vector xത୘ containing average for 
each column of T. we can obtain covariance matrix of T, 
C୘ = T଴

୘T଴. covariance matrix of T can be decomposed into  
C୘ = W୘Λ W where Λ is diagonal matrix consisting of 
eigenvalues  of C୘ sorted descending and W is a matrix 
consisting of eigenvectors corresponding to Λ.  

 ଶݑ

ሺࢊሻ 

ܹ 

ܸ 

 ଵݑ

 ଶݑ

ሺࢉሻ 

࢛૚ 

ሺ࢈ሻ 

 ࢃ

࢛૚ 
ሺࢇሻ 

 ࢂ



Since we have 18 features, we get 18 eigenvectors. For 
compression purpose we can choose the N vectors to 
represent the most principal components(PCs) and compose 
the N largest eigenvectors to be the feature matrix ேܹ. Final 
data ଴ܶ′ can be obtained from   

૙ࢀ
ᇱ = ࡺࢃ

ࢀ ૙ࢀ
 ࢀ

To recover the data ܶ′, we need ேܹ, ଴ܶ
ᇱ, and xത୘. Following 

equation shows how to obtain ܶ′. 
ᇱࢀ = ૙ࢀ

ᇱ ࡺࢃࢀ
ࢀ +  ܂തܠ

Recovered data ܶ′ equals to the original data T if we choose 
all eigenvectors instead of N largest eigenvectors such that 

ேܹ = ܹ. However, the compression ratio of this technique 
mainly depends on number of eigenvector that we choose 

ேܹ.  

 

2.4 Compression Ratio  
Let us assume that T is ܯ×ܭ matrix, then ேܹ is a ܯ×ܰ 
matrix, ଴ܶ

ᇱ is a ܰ×ܭ, and  xത୘is a 1×ܯ matrix. We can 
estimate the compression ratio as follows. 
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If we define ݎே =

ே

ெ
, then ܰ =  Equation above .ܯேݎ

becomes. 
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To obtain compression ratio ݎ > 1, we can derive the 
requirements. 

ࡷ
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In case of  a network of sensor where the fusion center kept 
the estimation of covariance matrix of traces from each 
sensor, we can directly obtain the compression ratio by 
evaluating the size of projected data(reduced 
dimensionality) and the original data. The compression ratio 
can be expressed as follows. 

࢘ =
ࡹࡷ
ࡺࡷ

=
ࡹ
ࡺ

 

Expression above clearly leads to higher compression ratio. 
Since there is no need to keep the eigenvectors or 
covariance matrix. 

 
3. EXPERIMENTAL RESULT 

 

In this section we will see the performance of PCA on the 
seismic dataset. The following figures show the 
performance of the technique to reduce the data 
representation size and its impact to the information 
conveyed by the seismic traces.  
 
Please open 
http://arsgiso.org/journals.php?DoGetPublication
=DoGet&varGetVolume=3&varGetIssue=1&var
GetIdJournal=6# to read the full version. 
 
 

4. CONCLUSION AND FUTURE WORKS 
 
We implement PCA to do compression by reducing the 
dimensionality of a seismic dataset. The experiment shows 
that PCA effectively preserves the integrity of seismic traces 
by 95 % while reduce the size by 6 times. In the future, we 
wish to evaluate some lossless technique to compress the 
lossy part of the data and increase the data integrity while 
maintain the compression rate 
 

5. REFERENCES 
 
[1] Breunig, Peter.2011. Managing More Bits Than Barrels. 
Chevron. 
[2] Davis, Aaron J. "Linear prediction coding for 
compressing of seismic data." U.S. Patent No. 4,509,150. 2 
Apr. 1985. 
[3] Spanias, Andreas S., Stefan B. Jonsson, and Samuel D. 
Stearns. "Transform methods for seismic data compression." 
Geoscience and Remote Sensing, IEEE Transactions on 
29.3 (1991): 407-416. 
[4] Villasenor, John D., R. A. Ergas, and P. L. Donoho. 
"Seismic data compression using high-dimensional wavelet 
transforms." Data Compression Conference, 1996. DCC'96. 
Proceedings. IEEE, 1996. 
[5] Al-Shuhail, Abdullatif A., and Wail A. Mousa. 
"Processing of Seismic Reflection Data Using MATLAB." 
74th EAGE Conference & Exhibition-Workshops. 2012 
 


